Predictive RANS simulations via Bayesian Model-Scenario Averaging
نویسندگان
چکیده
منابع مشابه
Predicting waste generation using Bayesian model averaging
A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...
متن کاملSparse Reconstruction via Bayesian Model Averaging
The problem of accurately representing a real-world signal by a concise list of numbers lies at the heart of signal processing. With bandlimited signals, for example, Nyquist theory tells us that we need to sample at twice the highest frequency. But most signals (e.g., speech, audio, images, video) can be represented much more concisely (i.e., “compressed”) if we take advantage of additional st...
متن کاملSelective Model Averaging with Bayesian Rule Learning for Predictive Biomedicine
Accurate disease classification and biomarker discovery remain challenging tasks in biomedicine. In this paper, we develop and test a practical approach to combining evidence from multiple models when making predictions using selective Bayesian model averaging of probabilistic rules. This method is implemented within a Bayesian Rule Learning system and compared to model selection when applied t...
متن کاملGraphical Posterior Predictive Classifier: Bayesian Model Averaging with Particle Gibbs
In this study, we present a multi-class graphical Bayesian predictive classifier that incorporates the uncertainty in the model selection into the standard Bayesian formalism. For each class, the dependence structure underlying the observed features is represented by a set of decomposable Gaussian graphical models. Emphasis is then placed on the Bayesian model averaging which takes full account...
متن کاملBayesian Model Averaging Across Model Spaces via Compact Encoding
Bayesian Model Averaging (BMA) is well known for improving predictive accuracy by averaging inferences over all models in the model space. However, Markov chain Monte Carlo (MCMC) sampling, as the standard implementation for BMA, encounters difficulties in even relatively simple model spaces. We introduce a minimum message length (MML) coupled MCMC methodology, which not only addresses these di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2014
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2014.06.052